Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms.
نویسندگان
چکیده
Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice, establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation, half of those with essential thrombocythemia or primary myelofibrosis do not, suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg, interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly, we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424, the first potent, selective, oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC(50)] = 281nM), and proliferation of JAK2V617F(+) Ba/F3 cells (IC(50) = 127nM). In primary cultures, INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F(+) polycythemia vera patients (IC(50) = 67nM) versus healthy donors (IC(50) > 400nM). In a mouse model of JAK2V617F(+) MPN, oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines, and preferentially eliminated neoplastic cells, resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs.
منابع مشابه
MYELOID NEOPLASIA Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms
Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice, establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation, half of those with essential thrombocythemia or primary myelofibrosis do not, suggesting alternative mechanisms fo...
متن کاملBiology and Clinical Management of Myeloproliferative Neoplasms and Development of the JAK Inhibitor Ruxolitinib
Myeloproliferative neoplasms (MPN) are debilitating stem cell-derived clonal myeloid malignancies. Conventional treatments for the BCR-ABL1-negative MPN including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) have, so far, been unsatisfactory. Following the discovery of dysregulated JAK-STAT signaling in patients with MPN, many efforts have been directe...
متن کاملJAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the fi...
متن کاملOncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors.
BACKGROUND Activating mutations in JAK1 and JAK2 have been described in patients with various hematologic malignancies including acute lymphoblastic leukemia and myeloproliferative neoplasms, leading to clinical trials with JAK inhibitors. While there has been a tremendous effort towards the development of specific JAK inhibitors, mutations conferring resistance to such drugs have not yet been ...
متن کاملCombined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity.
PURPOSE Deregulation of the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway is a hallmark for the Philadelphia chromosome-negative myeloproliferative diseases polycythemia vera, essential thrombocythemia, and primary myelofibrosis. We tested the efficacy of a selective JAK1/2 inhibitor in cellular and in vivo models of JAK2-driven malignancy. EXPERIMENTAL DE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 115 15 شماره
صفحات -
تاریخ انتشار 2010